
Argonne Leadership Computing Facility1 Argonne Leadership Computing Facility1

Using Openmp*
Effectively on Theta

Carlos Rosales-Fernandez & Ronald W Green
Intel Corporation
2019 ALCF Computational Performance Workshop

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Access and getting the files
Find a good working directory. These labs are small and don’t create a lot of
data. Your /home should suffice, assuming you have not exhausted your quota

To get started, copy the files to a directory of your choosing in the /projects
area:

$ tar -zxvf /projects/SDL_Workshop/training/UsingOpenMP/labs.tgz

Then change into the omp directory:

$ cd ./omp

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Methodology
• Labs are numbered “labX”

• We will work through the labs in numeric order starting with “lab1”

• Each lab has a “readme.txt” to describe the lab

• Each lab has a batch script “ labX.run”

• If there are multiple runs in a lab, run scripts are named “labX-Y.run”

• for example, if there are 2 run scripts in lab1, the run scripts are “lab1-
1.run” and lab1-2.run”

• Solutions, if needed are in directory “solution/”

• Move through the labs at your own pace OR follow along with the group

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Misc
Use latest Intel compiler

module swap intel/18.0.0.128 intel/19.0.3.199

OpenMP* 5.0 Reference

omp/OpenMPRef-5.0-111802-web.pdf

Getting the most out of your compiler
with the Intel Classic Compilers
Optimization Report

Ronald W Green, Martyn Corden

Technical Consulting Engineer

Intel Corporation

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Learn to use the consolidated and enhanced compiler optimization report in
Intel Classic Compilers

Control the information provided

Understand what optimizations the compiler performed

Use the information in the report to guide further tuning for improved
performance

6

Objectives

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Applicable to Intel® Compiler version 15.0 and newer
• for C, C++ and Fortran
• for Windows*, Linux* and OS X*

Main options (there are a lot of qopt-report-* options):
-qopt-report[=N] (Linux and OS X)
/Qopt-report[:N] (Windows)

N = 1-5 for increasing levels of detail, (default N=2)
-qopt-report-phase=str[,str1,…]

str = loop, par, vec, openmp, ipo, pgo, cg, offload, tcollect, all
-qopt-report-file=[stdout | stderr | filename]

7

General

(For readability, options may not be repeated for each OS where
spellings are similar. Options apply to all three OS unless otherwise
stated.)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

[-q|/Q]opt-report-phase=vec [-q|/Q]opt-report=N

N specifies the level of detail; default N=2 if N omitted

Level 0: No vectorization report
Level 1: Reports when vectorization has occurred.
Level 2: Adds diagnostics why vectorization did not occur.
Level 3: Adds vectorization loop summary diagnostics.
Level 4: Additional detail, e.g. on data alignment
Level 5: Adds detailed data dependency information

8

Vectorization – report levels

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Output goes to a text file by default
• File extension is .optrpt, root name same as object file’s

• One report file per object file, in object directory

• created from scratch or overwritten (no appending)

[-q | /Q]opt-report-file:stderr gives to stderr

:filename to change default file name

/Qopt-report-format:vs format for Visual Studio* IDE

For debug builds, (-g on Linux* or OS X*, /Zi on Windows*),
assembly code and object files contain loop optimization info

• /Qopt-report-embed to enable this for non-debug builds

9

Report Output

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

The optimization report can be large
Filtering can restrict the content to the most performance-
critical parts of an application

[-q | /Q]opt-report-routine:<function1>[,<function2>,…]
“function1” can be a substring of function name

or a regular expression

can also restrict to a particular range of line numbers, e.g.:
icl /Qopt-report-filter=“test.cpp,100-300” test.cpp
ifort –qopt-report-filter=“test.f90,100-300” test.f90

Also select the optimization phase(s) of interest with
-opt-report-phase

10

Filtering Report Output

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Hierarchical display of loop nest

• Easier to read and understand

• For loops for which the compiler generates multiple
versions, each version gets its own set of messages

Where code has been inlined, caller/callee info available

The “Loop” (formerly hlo) phase includes messages about
memory and cache optimizations, such as blocking, unrolling and
prefetching

• Now integrated with vectorization & parallelization reports

11

Loop, Vectorization and Parallelization Phases

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice
12

Hierarchically Presented
Loop Optimization Report (C/C++)

1 double a[1000][1000],b[1000][1000],c[1000][1000];

2

3 void foo() {

4 int i,j,k;

5

6 for(i=0; i<1000; i++) {

7 for(j=0; j< 1000; j++) {

8 c[j][i] = 0.0;

9 for(k=0; k<1000; k++) {

10 c[j][i] = c[j][i] + a[k][i] * b[j][k];

11 }

12 }

13 }

14 }

110/1

LOOP BEGIN at …\mydir\dev\test.c(7,5)
Distributed chunk2
….

LOOP BEGIN at …\mydir\dev\test.c(9,7)
Distributed chunk2
….

LOOP BEGIN at …\mydir\dev\test.c(6,3)
….

LOOP END

LOOP BEGIN at …\mydir\dev\test.c(6,3)
….

LOOP END
LOOP END

LOOP END

source location

loop nesting

header info

report contents

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice
13

Hierarchically Presented
Loop Optimization Report (Fortran)

110/1/19

LOOP BEGIN at matrix_step0.f90(12,5)
Loopnest Interchanged: (1 2 3) --> (1 3 2)

….
LOOP BEGIN at matrix_step0.f90(14,9)
loop was not vectorized: inner loop was vectorized
…

LOOP BEGIN at matrix_step0.f90(13,7)
…

remark #15301: PERMUTED LOOP WAS VECTORIZED
…
LOOP END

LOOP END
LOOP END

source location

loop nesting

header info

report contents

1 program matrix
2 !...a simple matrix multiply example
3 use iso_fortran_env
4 implicit none
5 integer, parameter :: sp=REAL32
6 integer, parameter :: dp=REAL64
7 integer, parameter :: ROWS=1000,COLS=1000,N=1000 ! square matrix example
8 real (kind=dp) :: a(ROWS,COLS)=2.0_dp, b(ROWS,COLS)=3.0_dp, c(ROWS,COLS)
9 integer :: i, j, k

10
11 c = 0.0_dp
12 do j=1,COLS
13 do i=1,ROWS
14 do k=1,N
15 c(i,j)=c(i,j)+a(i,k)*b(k,j)
16 end do
17 end do
18 end do
19 end program matrix

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Terminology and Tricks

Compiler Methods to Increase Performance

14

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

MULTIVERSIONING
When in doubt, make 2 or more versions of a loop

15

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Consider this:
int foo (real* array, int n)
…
for (i=0 ; i < n ; i++){

… do some work on array[i] … }

What is the value of ’n’ assumed by the compiler?
NO ASSUMPTION, could be positive OR negative

Is this worth vectorizing??

MULTIVERSIONING – make 2 or more versions of the loop:
example, 1 serial version, 1 vectorized version

16

MULTIVERSION Loops

What is the value of ‘n’?
I don’t know,
nor do you,
nor does the compiler!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

#So starting with this:

for (i=0 ; i < n ; i++){

… do some work on array[i] … }

17

MULTIVERSION Loops

actually create code that would mimic this
(pseudo coded)

if(n > 16) {
<V1> multiversion loop V1

#pragma vector always
for (i=0 ; i < n ; i++){ … }

} else {
<V2> multiverion loop V2
#pragma novector
for (i=0 ; i < n ; i++){ … }

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

PEEL, KERNEL, REMAINDER LOOPS
Achieving best data movement

18

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Consider this:

int foo (real* array, int n)

#pragma simd vector aligned(array:16) // vector length 4

for (i=0 ; i < n ; i++){

array[i+1] = array[i+1] + … }

Fetching array[1], 2, 3, 4 to fill a vector would have to use
unaligned loads/stores

Is this worth vectorizing?? Inefficient accesses, maybe not.

19

Some Compiler Tricks & Terminology

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice
20

PEEL LOOP

array[0] array[1] array[2] array[3]

array[4] array[5] array[6] array[7]

array[8] array[9] array[10] Array[11]

…

array[n-2] array[n-1]

#128 bit SSE vectors example
#pragma simd vector aligned(array:16) // vector length 4
for (i=0 ; i < n ; i++){

array[i+1] = array[i+1] + … }

Address mod 16 = 0 Accesses start here

MAIN MEMORY

array[0] array[1] array[2] array[3]

array[4] array[5] array[6] array[7]

array[8] array[9] array[10] Array[11]

…

array[n-2] array[n-1] unused unused

CACHE LINES

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

PEEL LOOP – do the first 3 iterations with unaligned loads/store.
THEN starting with element 4 (aligned on 16 byte boundary)
switch to aligned loads/stores.

Bonus points: how do you deal with addresses array[i+offset]?

21

PEEL LOOP

array[0] array[1] array[2] array[3]

array[4] array[5] array[6] array[7]

array[8] array[9] array[10] Array[11]

… [n-3]

array[n-2] array[n-1]

PEEL – do a loop 3 iterations to do theses 3 element
Use unaligned loads/stores. PEEL LOOP

THEN another loop
Do these elements
Aligned load/stores
KERNEL LOOP

And a loop for these 2 elements
Unaligned load/stores

REMAINDER LOOP

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

KERNEL LOOP – core of the loop done with ‘best possible’
vectorization

OR what if the # elements is not a multiple of the vector length?

real array[103] ;

#pragma simd vector aligned(array:16) // again, 4 elements per
vector

for (i=0; i<103 ; i++) {

array[i] = …. }

REMAINER LOOP – do elements 0..99 in chunks (vectors) of 4
elements, then branch to a serial loop with 3 iterations to ”clean
up”

22

Kernel and Remainder Loops

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Extra bonus points: what about this?

#pragma simd vector aligned(a, b:16 , c:16, d)

for (i=1 ; i < n -2; i++){

a[i] = 1.0/3.0 * (c[i-1] + a[i] + d[i+1]) + b[i]; }

Question: how do you get alignment here?

Answer – you can’t do all of the loads/stores the same

• try to find ‘best case’ where MOST of the loads/stores are
aligned (peel on [i] to get those aligned.
• Implies c and d will be unaligned loads/stores

23

Some Compiler Tricks & Terminology

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

LOOP BEGIN at ggFineSpectrum.cc(124,5) inlined into ggFineSpectrum.cc(56,7)

remark #15018: loop was not vectorized: not inner loop

LOOP BEGIN at ggFineSpectrum.cc(138,5) inlined into ggFineSpectrum.cc(60,15)

Peeled
remark #25460: Loop was not optimized

LOOP END

LOOP BEGIN at ggFineSpectrum.cc(138,5) inlined into ggFineSpectrum.cc(60,15)
remark #15145: vectorization support: unroll factor set to 4

remark #15002: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at ggFineSpectrum.cc(138,5) inlined into ggFineSpectrum.cc(60,15)

Remainder
remark #15003: REMAINDER LOOP WAS VECTORIZED

LOOP END

LOOP END

24

Peel loop, remainder loop and kernel

Vectorized with
Peeling and Remainder

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

MULTIVERSIONED Loops with
Peels, kernels, remainers

25

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice
26

Compiler uses both multiversioning and
peel/kernel/remainder loops

actually create code that would mimic this (pseudo coded)

if(n > 16) {
<V1> multiversion loop V1

<V1> PEEL loop
for (i=0 ; i < 4 ; i++){ … } #pragma novector

<V1> KERNEL loop
for (i=4 ; i < n-3 ; i++){ … } #pragma vector always

<V1> REMAINDER loop
for (i=n-2 ; i < n ; i++){ … } #pragma novector

} else {

<V2> multiverion loop V2

#pragma novector
for (i=0 ; i < n ; i++){ … }

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Multiversioning done when

• Can’t determine trip count

• Can’t determine alignment (have a version for aligned and
another version unaligned)

• Can’t determine stride

• offset = indx[i] ; a[i] = a[i + offset]*K;
• Possibilities: offset negative, offset could be stride 1 or stride 2 or ?

Indx[i] could be stepping 2, 4, 6, 8, etc (regular stride)
OR indx[i] could be jumping all over memory (worse case but often the
real-world case)

• Compiler may create version for every possible scenario

27

Final Remarks on Multiversioning

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

• Example shown was for 128bit vector-based processor

• AVX/AVX2 are 256bit. AVX512 is 512 bit

• Cache line length == max vector length
• Data moved to/from memory in cache lines == max vector length

• But for PEEL or REMAINDER, what if the # elements is equal to a smaller vector
length?
• Could do PEEL with a smaller SSE or AVX2 instruction on a AVX512 processor

• OR could do 1 element serial and the rest of the PEEL with a SSE or AVX2 instruction

• Same for REMAINDER loop – you may see vectorized PEEL or REMAINDER loops but they will be
short loops or smaller vector instruction sequences

28

Final Remarks on
Peel/Kernel/Remainder

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Follow Along Lab Exercise

Change directories to your lab directory and
subdirectory “omp/opt-report-lab-2019/linux”
Choose your language, cd c or cd fortran
\

29

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

C/C++ Inspect the func_step1 function

30

#include <math.h>

void func (float* theta, float* sth) {

int i;

for (i=0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);

}
subroutine func(theta, sth)

implicit none

real :: theta(:), sth(:)

integer :: i

do i=1,128

sth(i) = sth(i) + (3.1415927D0 * theta(i))

end do

end

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Fortran: Inspect the func_step1 function

31

subroutine func(theta, sth)

implicit none

real :: theta(:), sth(:)

integer :: i

do i=1,128

sth(i) = sth(i) + (3.1415927D0 * theta(i))

end do

end

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Run script “step1.sh”

./step1.sh

icc -c -qopt-report=4 -qopt-report-phase=loop,vec
-qopt-report-file=stderr func_step1.c

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec
-qopt-report-file=stderr func_step1.f90

32

Compile, Generate Optimization Report
phases vec,loop output to stderr

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr func_step1.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step1.c(4,3)
Multiversioned v1

remark #25231: Loop multiversioned for Data Dependence
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
…. (loop cost summary) ….
remark #25018: Estimate of max trip count of loop=32

LOOP END

LOOP BEGIN at func_step1.c(4,3)
Multiversioned v2

remark #15006: loop was not vectorized: non-vectorizable loop instance from multiversioning
LOOP END
===

33

Actionable Messages, C, Step 1

#include <math.h>
void foo (float * theta, float * sth) {
int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

Arguments theta and sth may be
aliased – have to assume this

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Begin optimization report for: FUNC

LOOP BEGIN at func_step1.f90(8,36)

<Peeled, Multiversioned v1>

LOOP END

LOOP BEGIN at func_step1.f90(8,36)

<Multiversioned v1>

remark #25233: Loop multiversioned for stride tests on Assumed shape arrays

remark #15388: vectorization support: reference sth has aligned access [func_step1.f90(8,3)]

remark #15388: vectorization support: reference theta has aligned access [func_step1.f90(8,3)]

<snip>

LOOP END

LOOP BEGIN at func_step1.f90(8,36)

<Alternate Alignment Vectorized Loop, Multiversioned v1>

remark #25015: Estimate of max trip count of loop=16

LOOP END

LOOP BEGIN at func_step1.f90(8,36)

<Remainder, Multiversioned v1>
===

34

Actionable Messages, Fortran, Step 1
Loop multiversioned due to Assumed Shape arrays

One version assumes contiguous data. This version has
PEEL + Kernel + Remainder loops

Another version assumes non-contiguous arrays (strided)
– look at the comment “masked strided loads. This has a
kernel loop and a remainder loop

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

C: Eliminate the multi-versioning due to possible alias of
arguments ‘sth’ and ‘theta’. Methods:

1. Use compiler option –fargument-noalias

2. Use __restrict__ or C99 (float*restrict theta, …)
along with –std=c99

What happens if they DO alias?

Fortran: declare the assumed shape arrays are CONTIGUOUS

real, contiguous :: theta(:), sth(:)

What happens if non-contiguous slices are passed?

35

Next Steps: run ./step2.sh

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr \
-fargument-noalias func_step2.c

Begin optimization report for: foo
Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step2.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access
remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15145: vectorization support: unroll factor set to 2
remark #15164: vectorization support: number of FP up converts: single to double precision 1
remark #15165: vectorization support: number of FP down converts: double to single precision 1
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 114
remark #36093: vector loop cost: 55.750
remark #36094: estimated potential speedup: 2.790
remark #36095: lightweight vector operations: 10
remark #36096: medium-overhead vector operations: 1
remark #36098: vectorized math library calls: 1
remark #36103: type converts: 2
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END
36

Actionable Messages: C, step2

/* a C99 version.
compile with –std=c99 */

#include <math.h>
void foo (float *restrict theta, \

float *restrict sth) {
int i;
for (i = 0; i < 128; i++)

sth[i] = sin(theta[i]+3.1415927);
}

(/Qalias-args- on Windows*)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr func_step2.f90
Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step2.f90(7,34)
remark #15388: vectorization support: reference sth has aligned access [func_step2.f90(7,1)]
remark #15388: vectorization support: reference sth has aligned access [func_step2.f90(7,1)]
remark #15388: vectorization support: reference theta has aligned access [func_step2.f90(7,1)]
remark #15399: vectorization support: unroll factor set to 4
remark #15417: vectorization support: number of FP up converts: single precision to

double precision 2 [func_step2.f90(7,1)]
remark #15418: vectorization support: number of FP down converts: double precision

to single precision 1 [func_step2.f90(7,1)]
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 12
remark #15477: vector loop cost: 10.000
remark #15478: estimated potential speedup: 2.160
remark #15479: lightweight vector operations: 10
remark #15487: type converts: 3
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=16

LOOP END

37

Actionable Messages: Fortran, step2

subroutine func(theta, sth)
implicit none
real, contiguous :: theta(:), sth(:)

Notice in report we have
PEEL, kernel, remainder –
no more masked strided
version

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Eliminate the type conversions, double-to-single and back.

C: replace ‘sin()’ with ‘sinf()’ and type cast the constant 3.1415927 with
3.1415927f

Fortran: replace double constant 3.1415927D0 with single precision, use
iso_fortran_env to help with readability

use iso_fortran_env

implicit none

..

integer, parameter :: sp = REAL32

integer, parameter :: dp = REAL64

do i=1,128

sth(i) = sth(i) + (3.1415927_sp * theta(i))

end do

38

Next Steps: run ./step3.sh

In Step 3, look in the opt-report for
‘estimated potential speedup’ – you
should be impressed with the perf
gain from simply cleaning up
sloppy coding

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias
func_step1.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step1.c(4,3)
remark #15135: vectorization support: reference theta has unaligned access

remark #15135: vectorization support: reference sth has unaligned access
remark #15127: vectorization support: unaligned access used inside loop body
remark #15002: LOOP WAS VECTORIZED
remark #36066: unmasked unaligned unit stride loads: 1
remark #36067: unmasked unaligned unit stride stores: 1
remark #36091: --- begin vector loop cost summary ---
remark #36092: scalar loop cost: 111
remark #36093: vector loop cost: 28.000
remark #36094: estimated potential speedup: 5.400
remark #36095: lightweight vector operations: 9
remark #36098: vectorized math library calls: 1
remark #36104: --- end vector loop cost summary ---
remark #25018: Estimate of max trip count of loop=32

LOOP END
39

Actionable Messages: C, Step 3

Note no more up/down
conversions
Estimated potential speedup:
Step2: 2.790
Step3: 5.400

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr func_step3.f90
Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step3.f90(11,37)
remark #15388: vectorization support: reference sth has aligned access [func_step3.f90(11,3)]
remark #15388: vectorization support: reference sth has aligned access [func_step3.f90(11,3)]
remark #15388: vectorization support: reference theta has aligned access [func_step3.f90(11,3)]
remark #15399: vectorization support: unroll factor set to 2
remark #15300: LOOP WAS VECTORIZED
remark #15442: entire loop may be executed in remainder
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 8
remark #15477: vector loop cost: 4.000
remark #15478: estimated potential speedup: 3.220
remark #15479: lightweight vector operations: 7
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=16

LOOP END

LOOP BEGIN at func_step3.f90(11,37)
<Alternate Alignment Vectorized Loop>

remark #25015: Estimate of max trip count of loop=16
LOOP END

40

Actionable Messages: Fortran, Step 3

Note no more up/down
conversions
Estimated potential speedup:
Step2: 2.160
Step3: 3.220

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

If data is aligned, which you should do, tell the compiler that sth
and theta are aligned. This changes unaligned loads/stores with
aligned loads/stores. And in some cases, the compiler won’t have
to create an aligned version of the loop and an unaligned version.

41

Next Steps: run ./step4.sh

Alignment on Intel® Xeon Phi™ is
key to performance – up to 20x
performance improvement.

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

How to Align Data (C/C++)
Allocate memory on heap aligned to n byte boundary:

void* _mm_malloc(int size, int n)
int posix_memalign(void **p, size_t n, size_t size)

Alignment for variable declarations:
__attribute__((aligned(n))) var_name or
__declspec(align(n)) var_name

And tell the compiler…
#pragma vector aligned
#pragma omp simd aligned(var [,var…]:<n>)

• Asks compiler to vectorize, overriding cost model, and assuming all array data
accessed in loop are aligned for targeted processor

• May cause fault if data are not aligned

__assume_aligned(array, n)

• Compiler may assume array is aligned to n byte boundary

42

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for AVX, n=16 for SSE

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

How to Align Data (Fortran)
Align array on an “n”-byte boundary (n must be a power of 2)

!dir$ attributes align:n :: array
• Works for dynamic, automatic and static arrays (not in common)

For a 2D array, choose column length to be a multiple of n, so that consecutive
columns have the same alignment (pad if necessary)

-align array64byte compiler tries to align all array types

And tell the compiler…
!dir$ vector aligned OR
!$omp simd aligned(var [,var…]:<n>)

• Asks compiler to vectorize, overriding cost model, and assuming all array
data accessed in loop are aligned for targeted processor

• May cause fault if data are not aligned
!dir$ assume_aligned array:n [,array2:n2, …]

• Compiler may assume array is aligned to n byte boundary

43

n=64 for Intel® Xeon Phi™ coprocessors, n=32 for AVX, n=16 for SSE

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias
-qopenmp-simd func_step4.c

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step4.c(7,8)
remark #15388: vectorization support: reference theta has aligned access [func_step4.c(8,14)]
remark #15388: vectorization support: reference sth has aligned access [func_step4.c(8,5)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 111
remark #15477: vector loop cost: 19.750
remark #15478: estimated potential speedup: 5.610
remark #15479: lightweight vector operations: 8
remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=32

LOOP END
===

44

Actionable Messages: C, Step4

Note aligned accesses
Estimated potential speedup:
Step3: 5.400
Step4: 5.610

#pragma omp simd aligned(sth, theta:32)
for (i=0; i < 128; i++)
sth[i] = sinf(theta[i]+3.1415927f);

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr
-qopenmp-simd func_step4.f90

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step4.f90(10,21)
remark #15388: vectorization support: reference sth has aligned access [func_step4.f90(12,3)]
remark #15388: vectorization support: reference sth has aligned access [func_step4.f90(12,3)]
remark #15388: vectorization support: reference theta has aligned access [func_step4.f90(12,3)]
remark #15399: vectorization support: unroll factor set to 8
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 8
remark #15477: vector loop cost: 16.000
remark #15478: estimated potential speedup: 4.000
remark #15479: lightweight vector operations: 7
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=4

LOOP END
===

45

Actionable Messages: Fortran, Step4

Note no more version
unaligned
Estimated potential speedup:
Step3: 3.220
Step4: 4.000

!$omp simd aligned(theta, sth:64)
do i=1,128
sth(i) = sth(i) + (3.1415927_sp * theta(i))

end do
!$omp end simd

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

If you don’t use a –O option, default optimization is O2

At O2 and O3, the compiler auto-vectorizes your code

BUT it assumes ‘lowest common denominator’ processor and uses
older 128 SSE instructions.

Most modern (“Sandy Bridge and better, post-2011) support 256-
bit AVX. AVX-512 is common now in server chips

In Step5 we add –xavx to get 256-bit vector instructions

46

Next Steps: run ./step5.sh

If you are not using a –x<arch> or –ax<arch> option, you are
potentially not gaining on an easy 2-4x performance gain

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

$ icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias
-xavx func_step1.c

Begin optimization report for: foo

Report from: Loop nest & Vector optimizations [loop, vec]
LOOP BEGIN at func_step5.c(5,8)

remark #15388: vectorization support: reference theta has aligned access [func_step5.c(6,14)]
remark #15388: vectorization support: reference sth has aligned access [func_step5.c(6,5)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 110
remark #15477: vector loop cost: 9.870
remark #15478: estimated potential speedup: 11.130
remark #15479: lightweight vector operations: 8
remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=16

LOOP
END===

47

Actionable Messages: C, Step 5

Note loop trip count went from
32 to 16
Estimated potential speedup:
Step4: 5.610
Step5: 11.130 !!!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr
-xavx -qopenmp-simd func_step5.f90

Report from: Loop nest & Vector optimizations [loop, vec]
LOOP BEGIN at func_step5.c(5,8)

remark #15388: vectorization support: reference theta has aligned access [func_step5.c(6,14)]
remark #15388: vectorization support: reference sth has aligned access [func_step5.c(6,5)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 110
remark #15477: vector loop cost: 9.870
remark #15478: estimated potential speedup: 9.140
remark #15479: lightweight vector operations: 8
remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=16

LOOP
END===

48

Actionable Messages: Fortran, Step 5

Note loop trip count went from
32 to 16
Estimated potential speedup:
Step4: 4.000
Step5: 9.140!!!

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

C:

Step1: estimated potential speedup: 2.790

Step5: estimated potential speedup: 11.130 ~4X speedup!

Fortran:

Step1: estimated potential speedup: 1.400

Step5: estimated potential speedup: 9.140 ~6.5X speedup!

49

Check Point – Progress so far

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Run step5-avx512.sh

This replaces AVX with AVX512. Potentially can give us 2x

50

step5-avx512.sh

FORTRAN example:
LOOP BEGIN at func_step5.f90(10,21)

remark #15388: vectorization support: reference sth(i) has aligned access [func_step5.f90(12,3)]
remark #15388: vectorization support: reference sth(i) has aligned access [func_step5.f90(12,12)]
remark #15388: vectorization support: reference theta(i) has aligned access [func_step5.f90(12,37)]
remark #15305: vectorization support: vector length 8
remark #15399: vectorization support: unroll factor set to 8
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #26013: Compiler has chosen to target XMM/YMM vector. Try using -qopt-zmm-usage=high to override
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector cost summary ---
remark #15476: scalar cost: 8
remark #15477: vector cost: 0.870
remark #15478: estimated potential speedup: 9.140
remark #15488: --- end vector cost summary ---
remark #25015: Estimate of max trip count of loop=2

LOOP END

WAIT – speedup is THE SAME as AVX!

What is this option

-qopt-zmm-usage=high ??

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

-xcore-avx512 or –xskylake-avx512 may favor AVX2 instead of
AVX512

Override with

-xcore-avx512 –qopt-zmm-usage=high

Or

-xcommon-avx512

Skylake ONLY. Icelake and above will favor AVX512

Run ./step5-skylake.sh to compile with
–xskylake-avx512 –qopt-zmm-usage=high

Icelake:

–xicelake-server # don’t need –qopt-zmm-usage=high

51

Skylake Notes

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

C:

Step1: estimated potential speedup: 2.790

Step5: estimated potential speedup: 11.130 ~4X speedup!

Step5-skylake est potential speedup: 20.54 ~7.4x speedup!

Fortran:

Step1: estimated potential speedup: 1.400

Step5: estimated potential speedup: 9.140 ~6.5x speedup!

Step5-skylake est potential speedup: 18.28 ~13x speedup!

52

Check Point – Progress so far

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

What happens if the loop has a large trip count?

If the code writes out a long vector or array, by default through
cache, the data cache is not big enough to hold the data and all
existing data is flushed out.
Sometimes you want to ‘bypass cache’ aka STREAMING STORES

With a fixed, large trip count, the compiler will automatically
generate streaming store instructions.

Or you can control with –qopt-streaming-stores <setting>

OR #pragma vector nontemporal !dir$ vector nontemporal

In this step we change the loop upper bound from 128 to 2,000,00
and look for report to tell us when streaming stores are enabled

53

Other Optimizations: run ./step6.sh

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -
qopenmp-simd -xavx func_step6.c

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step6.c(5,8)
remark #15388: vectorization support: reference theta has aligned access [func_step6.c(6,14)]
remark #15388: vectorization support: reference sth has aligned access [func_step6.c(6,5)]
remark #15412: vectorization support: streaming store was generated for sth [func_step6.c(6,5)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 109
remark #15477: vector loop cost: 5.06
remark #15478: estimated potential speedup: 21.53
remark #15479: lightweight vector operations: 8
remark #15481: heavy-overhead vector operations: 1
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=250000

LOOP END
===

54

Actionable Messages: C, Step6

for (i = 0; i < 2000000; i++)
sth[i] = sinf(theta[i]+3.1415927f);

}

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -xavx -qopenmp-simd
-qopt-streaming-stores always func_step6.f90
Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step6.f90(10,21)
remark #15388: vectorization support: reference sth has aligned access [func_step6.f90(12,3)]
remark #15388: vectorization support: reference sth has aligned access [func_step6.f90(12,3)]
remark #15388: vectorization support: reference theta has aligned access [func_step6.f90(12,3)]
remark #15412: vectorization support: streaming store was generated for sth [

func_step6.f90(12,3)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 8
remark #15477: vector loop cost: 0.43
remark #15478: estimated potential speedup: 18.280
remark #15479: lightweight vector operations: 7
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=250000

LOOP END
===

55

Actionable Messages: Fortran, Step6

!$omp simd aligned(theta, sth:64)
do i=1,2000000
sth(i) = sth(i) + (3.1415927_sp *

theta(i))
end do
!$omp end simd

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

So far the loop count has been a constant.

What if the loop trip count is passed as an argument?
force streaming stores with [–q|/Q]opt-streaming-stores always
void func (float* theta, float* sth, int n) {
…

for (i=0; i < n; i++)

sth[i] = sinf(theta[i]+3.1415927f);

subroutine func(theta, sth, n)

…

do i=1,n

sth(i) = sth(i) + (3.1415927_sp * theta(i))

end do

56

Next Steps: run ./step7.sh

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

icc -c -qopt-streaming-stores always -qopt-report=4 -qopt-report-phase=loop,vec -qopt-
report-file=stderr -fargument-noalias -qopenmp-simd -xavx func_step7.c

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step7.c(5,3)
remark #15388: vectorization support: reference theta has aligned access [func_step7.c(6,14)]
remark #15388: vectorization support: reference sth has aligned access [func_step7.c(6,5)]
remark #15412: vectorization support: streaming store was generated for sth [func_step7.c(6,5)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 109
remark #15477: vector loop cost: 5.06
remark #15478: estimated potential speedup: 18.060
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---

LOOP END

LOOP BEGIN at func_step7.c(5,3)
<Remainder>
LOOP END

57

Actionable Messages: C, Step7

Talking point: why do we have a remainder loop
now? Why didn’t we get it before?
With a variable trip count, how does the compiler
know how many iterations in the remainder?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -xavx -qopenmp-simd
-qopt-streaming-stores always func_step7.f90

LOOP BEGIN at func_step7.f90(13,1)
remark #15388: vectorization support: reference sth has aligned access [func_step7.f90(14,3)]
remark #15388: vectorization support: reference sth has aligned access [func_step7.f90(14,3)]
remark #15388: vectorization support: reference theta has aligned access [func_step7.f90(14,3)]
remark #15412: vectorization support: streaming store was generated for sth [func_step7.f90(14,3)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 8
remark #15477: vector loop cost: 0.430
remark #15478: estimated potential speedup: 17.140

R emark #15488: --- end vector loop cost summary ---
LOOP END

LOOP BEGIN at func_step7.f90(13,1)
<Remainder>
LOOP END

58

Actionable Messages: Fortran, Step7

Talking point: why do we have a remainder loop
now? Why didn’t we get it before?
With a variable trip count, how does the compiler
know how many iterations in the remainder?

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

“–qopt-streaming-stores always “ affects the entire source file

To be more strategic, several options:

1. Use #pragma/!dir$ loop count <settings> to give the compiler
hints, let it determine when to make streaming stores

2. Use #pragma/!dir$ vector nontemporal to target specific loops

3. Use PGO, the compiler will use observed trip counts to
determine when to use streaming stores

Let’s use #pragma/!dir$ loop count min option and remove –qopt-
streaming-stores

#pragma loop count min(2000000)

!dir$ loop count min=2000000

59

Next Steps: run ./step8.sh

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

icc -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -fargument-noalias -
qopenmp-simd -xavx func_step8.c

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step8.c(6,3)
remark #15388: vectorization support: reference theta has aligned access [func_step8.c(7,14)]
remark #15388: vectorization support: reference sth has aligned access [func_step8.c(7,5)]
remark #15412: vectorization support: streaming store was generated for sth [func_step8.c(7,5)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 109
remark #15477: vector loop cost: 5.060
remark #15478: estimated potential speedup: 21.530
remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---

LOOP END

LOOP BEGIN at func_step7.c(5,3)
<Remainder>
LOOP END

60

Actionable Messages: C, Step8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

ifort -c -qopt-report=4 -qopt-report-phase=loop,vec -qopt-report-file=stderr -xavx -qopenmp-simd
func_step8.f90

Report from: Loop nest & Vector optimizations [loop, vec]

LOOP BEGIN at func_step8.f90(13,1)
remark #15388: vectorization support: reference sth has aligned access [func_step8.f90(14,3)]
remark #15388: vectorization support: reference theta has aligned access [func_step8.f90(14,3)]
remark #15412: vectorization support: streaming store was generated for sth [func_step8.f90(14,3)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15467: unmasked aligned streaming stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 6
remark #15477: vector loop cost: 0.430
remark #15478: estimated potential speedup: 17.140

remark #15488: --- end vector loop cost summary ---
LOOP END

LOOP BEGIN at func_step7.c(5,3)
<Remainder>
LOOP END

61

Actionable Messages: Fortran, Step8

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

C: Final Comments on This Example
1 #include <math.h>
2 void func (float* theta, float* sth) {
3 int i;
4 #pragma omp simd aligned(sth, theta:32)
5 for (i=0; i < 128; i++)
6 sth[i] = sinf(theta[i]+3.1415927f);
7 }

LOOP BEGIN at func_step5.c(5,8)
remark #15388: vectorization support: reference theta has aligned access [func_step5.c(6,14)]
remark #15388: vectorization support: reference sth has aligned access [func_step5.c(6,5)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 1
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 110
remark #15477: vector loop cost: 9.870

remark #15478: estimated potential speedup: 11.130

remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=16

LOOP END

62

10/1/19

General ops estimate

call to vectorized sinf
libsvml

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Fortran: Final Comments on Example
!.... A slightly more complex expression with SIN
10 !$omp simd aligned(theta, sth:64)
11 do i=1,128
12 sth(i) = sth(i) + sin((3.1415927_sp * theta(i)))
13 13 end do
14 !$omp end simd

LOOP BEGIN at func_step5_morecomplex.f90(10,21)
remark #15388: vectorization support: reference theta has aligned access [func_step5_morecomplex.f90(12,21)]
remark #15388: vectorization support: reference sth has aligned access [func_step5_morecomplex.f90(12,3)]
remark #15388: vectorization support: reference sth has aligned access [func_step5_morecomplex.f90(12,3)]
remark #15301: OpenMP SIMD LOOP WAS VECTORIZED
remark #15448: unmasked aligned unit stride loads: 2
remark #15449: unmasked aligned unit stride stores: 1
remark #15475: --- begin vector loop cost summary ---
remark #15476: scalar loop cost: 110
remark #15477: vector loop cost: 10.120
remark #15478: estimated potential speedup: 10.850

remark #15482: vectorized math library calls: 1
remark #15488: --- end vector loop cost summary ---
remark #25015: Estimate of max trip count of loop=16

LOOP END

63

10/1/19

General ops estimate

“vectorized math call” call to vectorized
sin function (in libsvml)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

-qopt-report-phase=
par auto-parallelization report, structured similarly to

vectorization report
openmp report on OpenMP constructs merged into the loop

report
pgo report on Profile Guided Optimization, including

which functions had useful profiles
cg optimizations during code generation, such as

intrinsic function lowering
loop additional loop and memory optimizations, such as

cache blocking, prefetching, scalar replacement, etc.
tcollect data collection for Intel® Trace Analyzer

64

Reports On Other Optimization Phases

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Example Code for IPO Report
1 #include <stdio.h>
2
3 static void __attribute__((noinline))
bar (float a[100][100], float b[100][100]) {
4 int i, j;
5 for (i = 0; i < 100; i++) {
6 for (j = 0; j < 100; j++) {
7 a[i][j] = a[i][j] + 2 * i;
8 b[i][j] = b[i][j] + 4 * j;
9 }
10 }
11 }
12
13 static void foo(float a[100][100],

float b[100][100]) {
14 int i, j;
15 for (i = 0; i < 100; i++) {
16 for (j = 0; j < 100; j++) {
17 a[i][j] = 2 * i;
18 b[i][j] = 4 * j;
19 }
20 }
21 bar(a, b);
22 }
23

24 extern int main() {
25 int i, j;
26 float a[100][100];
27 float b[100][100];
28
29 for (i = 0; i < 100; i++) {
30 for (j = 0; j < 100; j++) {
31 a[i][j] = i + j;
32 b[i][j] = i - j;
33 }
34 }
35 foo(a, b);
36 foo(a, b);
37 fprintf(stderr, "%d %d\n",

a[99][9], b[1]99]);
38 }

Compiled with:

icc -qopt-report=3
–opt-report-phase=ipo sm.c

65

10/1/19

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Features of the IPO Report – Inlining
-qopt-report-phase=ipo –opt-report=3

66

Settings that control the
amount of inlining allowed

Report for function main at line
24 of source file sm.c
foo() is inlined at lines 35 & 36

bar() called from foo at line 21
but not inlined into main

External function fprintf

User function bar() at line 3 has
no function calls
Static function foo() at line 13 is
dead if all calls to it are inlined

INLINING OPTION VALUES:
-inline-factor: 100

...

INLINE REPORT: (main) [1] sm.c(24,19)
-> INLINE: [35] foo()
-> [21] bar()

-> INLINE: [36] foo()
-> [21] bar()
->EXTERN: [37] fprintf

INLINE REPORT: (bar) [2] sm(3,81)

DEAD STATIC FUNCTION: (foo) sm.c(13,55)

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Features of the IPO Report – more detail
-qopt-report-phase=ipo –opt-report=4

Whole Program Optimization
report

% of total routines compiled so far
sz = Size of each inlineable routine
in intermediate language units
(total = (stmts + exprs))

isz = Increase in size of caller due
to inlining

Reasons routines were not inlined

WHOLE PROGRAM (SAFE)
[EITHER METHOD]: true

WHOLE PROGRAM (SEEN)
[TABLE METHOD]: true

WHOLE PROGRAM (READ)
OBJECT READER METHOD]: false

INLINE REPORT: (main) [1/3=33.3%] sm.c(24,19)

-> INLINE: [35] foo (isz = 40) (sz = 47 (25+22))

-> [21] bar() (isz = 47) (sz = 54 (24+30))

[[Called routine is noinline]]

-> INLINE: [35] foo (isz = 40) (sz = 47 (25+22))

-> [21] bar() (isz = 47) (sz = 54 (24+30))

[[Called routine is noinline]]

-> EXTERN: [37] fprintf

67

10/1/19

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Compile with –opt-report-phase=offload

Separate reports are generated for host and coprocessor

Reports for offloads using Intel® Cilk™ Plus keywords and also for
offloads using Intel or OpenMP 4.0 pragmas or directives

Example for OpenMP 4.0 offload pragma:

icc –c -openmp -qopt-report-phase=offload offload_test.c

68

Offload Report
for Intel® Xeon Phi™ coprocessors

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

Offload Report – Example with OpenMP
01 #pragma omp declare target
02 int compute(int i) { return i++; }
03 #pragma omp end declare target
04
05 int do_offload() {
06 int i = 0;
07 #pragma omp target map(tofrom:i)
08 { i = compute(i); }
09 return i;
10 }

Host Report
offload_test.c(6-6):OFFLOAD:do_offload: Offload to target MIC 1
Data sent from host to target

i, scalar size 4 bytes
Data received by host from target

i, scalar size 4 bytes

Coprocessor Report
offload_test.c(6-6):OFFLOAD:do_offload: Outlined offload region
Data received by target from host

i, scalar size 4 bytes
Data sent from target to host

i, scalar size 4 bytes

6910/1/19

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice

-vec-report, -par-report and -openmp-report are deprecated.

They do not give the same output as for the version 14 compiler.

Instead, they are mapped to the closest equivalent phase and level of the new
optimization report. Reports are not written to stderr unless you set –opt-report-
file=stderr or put this into your configuration file.

Users are encouraged to convert do the new, more powerful switches. You may want
to delete *.optrpt files in the ”clean” section of your makefiles.

70

Mapping old switches to new

Copyright © 2014, Intel Corporation. All rights reserved. *Other names and brands may be claimed as the property of others.Optimization Notice
71

Further Information on vectorization
The Intel® Compiler User Guides:

https://software.intel.com/en-us/compiler_15.0_ug_f

Series of short, audio-visual vectorization tutorials:
https://software.intel.com/en-us/search/site/field_tags/explicit-vector-programming-

43556

New Optimization Report (compilers version 15.0+)
https://software.intel.com/en-us/videos/getting-the-most-out-of-the-intel-compiler-
with-new-optimization-reports

Other articles:
• Requirements for Vectorizable Loops

http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops

• Explicit Vector Programming in Fortran

https://software.intel.com/en-us/articles/explicit-vector-programming-in-fortran

• Fortran Array Data and Arguments and Vectorization

https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-
vectorization

https://software.intel.com/en-us/search/site/field_tags/explicit-vector-programming-43556
https://software.intel.com/en-us/videos/getting-the-most-out-of-the-intel-compiler-with-new-optimization-reports
http://software.intel.com/en-us/articles/requirements-for-vectorizable-loops
https://software.intel.com/en-us/articles/explicit-vector-programming-in-fortran
https://software.intel.com/en-us/articles/fortran-array-data-and-arguments-and-vectorization

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
73

Logical Processor Mapping 64-core KNL Node

Core 0

Proc 0
Proc 64
Proc 128
Proc 192

Core 1

Proc 1
Proc 65
Proc 129
Proc 193

Core 15

Proc 15
Proc 79
Proc 143
Proc 207

Core 16

Proc 16
Proc 80
Proc 144
Proc 208

Core 17

Proc 17
Proc 81
Proc 145
Proc 209

Core 31

Proc 31
Proc 95
Proc 159
Proc 223

Core 32

Proc 32
Proc 96
Proc 160
Proc 224

Core 33

Proc 33
Proc 97
Proc 161
Proc 225

Core 47

Proc 47
Proc 111
Proc 175
Proc 239

Core 48

Proc 48
Proc 112
Proc 176
Proc 240

Core 49

Proc 49
Proc 113
Proc 177
Proc 241

Core 63

Proc 63
Proc 127
Proc 191
Proc 255

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
74

Lab 1 - OpenMP* Affinity Control
We will use a simple hand-written matrix-matrix multiplication example to
illustrate the effect of affinity on runtime.

To get started, change into the “lab1” affinity directory:

$ cd omp/lab1

Inside this directory you will find a simple build.sh script and COBALT
submission script – lab1.run.

Start by executing the build script:

$./build.sh

This will generate the mat.omp executable that you need to complete this
exercise.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
75

Lab 1-1 OpenMP* Affinity Control
Examine and then submit the lab1.run script to run the example code with a
variety of affinity settings and thread counts:

$ qsub ./lab1-1.run

This will generate an output file, lab1-1.out, which contains details of each run
configuration and the approximate performance achieved.

Inspect “lab1-1.out” and try to answer the following questions:

§ What seems to be the best affinity setting combination for this code?

§ What is the speedup achieved by using optimal affinity settings?

§ Can you modify the submission script to add other affinity settings (or thread
counts) and test to see if there are alternatives that work better?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
76

Lab 1-1 Solution
The best combination should be using the following:

§ OMP_NUM_THREADS=64

§ OMP_PLACES=cores

§ OMP_PROC_BIND=spread

Note the following characteristics:

§ Since KNL is capable of issuing 2 vector instructions per core per cycle from a
single thread ,there may not a need to go over 64 threads to achieve maximum
performance in a code of this type - Feel free to try and measure the
performance.

§ Using a compact affinity setting leaves cores unused and leads to lower overall
performance.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
78

OMP_DISPLAY_AFFINITY
At the start of the process, display the binding or affinity of the OMP threads

• Environment variable, default is FALSE

export OMP_DISPLAY_AFFINITY=true

• On Theta this SHOULD work but seems to be ignored in qsub script (ideas?)

• Shell env, export in run script, passed with –env on aprun

• Alternative KMP_AFFINITY=verbose

• Pass with aprun:

• aprun –n 1 –N 1 --env KMP_AFFINITY=verbose –cc none
./mat.omp &>> lab1-2.out

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
79

Lab1-2 Why Bind “close” is slow
• qsub lab1-2.run # OMP_PROC_BIND=close

grep tid lab1-2.out | sort -n

Core 0

Proc 0
Proc 64
Proc 128
Proc 192

Core 1

Proc 1
Proc 65
Proc 129
Proc 193

Core 15

Proc 15
Proc 79
Proc 143
Proc 207

Core 16

Proc 16
Proc 80
Proc 144
Proc 208

Core 17

Proc 17
Proc 81
Proc 145
Proc 209

Core 31

Proc 31
Proc 95
Proc 159
Proc 223

Core 32

Proc 32
Proc 96
Proc 160
Proc 224

Core 33

Proc 33
Proc 97
Proc 161
Proc 225

Core 47

Proc 47
Proc 111
Proc 175
Proc 239

Core 48

Proc 48
Proc 112
Proc 176
Proc 240

Core 49

Proc 49
Proc 113
Proc 177
Proc 241

Core 63

Proc 63
Proc 127
Proc 191
Proc 255

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
81

aprun –j 1 –cc depth –d 64
• qsub lab1-3.run

• With –j 1 we only use 1 Processor (HW thread) per core

• 64 threads for matmult

• 2 run experiments:

1. We set OMP_PROC_BIND=close

2. Then try OMP_PROC_BIND=spread

Compare GFLOPS lab1-3.out lab1-3.out

grep GFLOPS lab1-3.out

Did CLOSE or SPREAD make a difference? Must be +-3% to be above noise.
Why/Why not?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
83

Lab 2 - Basic Task Generation and Execution

In this example you will build a simple code that uses tasks to print out the simple
sentence:

First, change to the basic directory:

$ cd ./basic

Now edit the provided sequential version basic.c so that each of the words in the
sentence is printed to screen from a separate task. Remember that you will have to:
§ Define a parallel region
§ Generate the tasks within a single construct
Compile your new version (don’t forget the -qopenmp flag) and ensure there are no
compilation errors.

Hello World from OpenMP!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
84

Lab 2 - Testing

Now launch the provided basic.run script so that you can see the output of your
code when using multiple threads:

$ qsub ./basic.run

The script assumes your executable is called a.out, and provides the output in
file basic.out.

Did the sentence come out correctly? It is unlikely, unless you used any type of
synchronization - if you did you are ahead of the game - congratulations!

Now try to come up with two implementations that write the output in order
while still using the same number of tasks. Do not worry about serialization -
this exercise is not about performance, but methodology.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
85

In solution 1 we simply place a taskwait
statement in between each printf
command, so that the output is serialized.

This is a simple way of ensuring order but,
in more complex problems it completely
defies the purpose of using OpenMP* in the
first place.

Lab 2 - Solution 1

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
printf(“Hello “);
#pragma omp taskwait
#pragma omp task
printf(“World “);
#pragma omp taskwait
#pragma omp task
printf(“from”);
#pragma omp taskwait
#pragma omp task
printf(“OpenMP!”);

}
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
86

In solution 2 we use the
alternative method of defining
dependencies among tasks.

In this simple example the result
is the same - complete reordering
at the expense of full
serialization.

But in more complex codes
defining dependencies may allow
for greater parallel execution
opportunities at runtime.

Lab 2 - Solution 2

#pragma omp parallel
{

#pragma omp single
{

#pragma omp task depend(out:a)
a = printf(“Hello “);

#pragma omp task depend(in:a) depend(out:b)
b = printf(“World “);

#pragma omp task depend(in:b) depend(out:c)
c = printf(“from”);

#pragma omp task depend(in:c)
printf(“OpenMP!”);

}
}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
88

Lab 3 - A Simple Fibonacci Number Generator

The Fibonacci series is an integer series defined by having numbers which, after the first one, are the
sum of the previous two in the series:

A simple Fibonacci generator can be coded as a recursive function:

1, 1, 2, 3, 5, 8, 13, 21, …

int fib(int n)
{

if(n < 2) return n;
int i = fib(n - 1);
int j = fib(n - 2);
return i+j;

}

Your mission, should you choose to accept it, is to create a new version of this function that can be
executed in parallel using OpenMP* constructs.

The following slides guide you through the process, and point to a solution in case you get stuck.

int main(int argc,
char *argv[])

{
...
answer = fib(number);
...

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
89

Lab 3 - Getting started

First go to the Fibonacci directory:

$ cd ../fibonacci

Inside this directory you will find three subdirectories named ver0, ver1, ver2.
They each correspond to a version of the Fibonnaci number generator:

§ ver0 - serial implementation, for reference and getting started.
§ ver1 - proposed simple tasking solution
§ ver2 - proposed refined tasking solution
Start by making a copy of version 0 so that you can work with it and still have a
clear reference code to go back to:

$ cp ./ver0/* ./

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
90

Lab 3 - Some Hints

I’m not going to tell you exactly how to do this, but remember two critical things:

1. You MUST initiate the task generation process inside a single region within a
parallel OpenMP* region - in this case main would be the right place to do this.

2. If you look inside the fib.c source file you will see that the fib() function either
returns immediately or has two independent tasks to perform.

3. Once those tasks are performed their value is added and returned - perhaps an
appropriate location for a synchronization point.

Try to use this hints and what you have learned to parallelize this recursive code
using OpenMP* tasks.

Next slide has the answer if you get stuck!

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
91

Lab 3 - Proposed Solution (ver1)

Our proposed solution has a single task entering the function fib() from main(). It then
generates two additional tasks to execute calls to fib() independently for (n-1) and (n-2):

int fib(int n)
{

if(n < 2) return n;
int i, j;
#pragma omp task shared(i)
{

i = fib(n - 1);
}
#pragma omp task shared(j)
{

j = fib(n - 2);
}
#pragma omp taskwait

return i+j;
}

int main(int argc,
char *argv[])

{
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
answer = fib(number);

}
}
...

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
92

Lab 3 - Analysis of the Solution

Whether using your own version or the proposed solution in directory ver1,
submit a quick job to determine how scalable your implementation is:

$ qsub ./tasking.run

This will save the number of threads and the time taken to determine the 41st

number in the Fibonacci series to an output file called tasking.out.

§ What is the best speedup you can get out of this code, from 4 to 128
threads?

§ Is this faster or slower than the original serial implementation?

§ Can you think of any way to improve the proposed solution?

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
93

Lab 3 - A Better Solution (ver2)

It turns out that the proposed solution in ver1 works correctly, but generates excessive
overhead by generating too many tasks.

Ideally one would include a variable threshold below which a serial function is used rather than
a parallelized one. This is what the solution in the directory ver2 provides.

Try to develop your own version of this hybrid code that enables better workload balance or, if
you prefer, look at the solution provided in ver2 and described in the next slide.

Go to the ver2 directory (or use your own solution) to submit the tasking.run script to complete
a new scalability analysis. Can you see the difference in scalability and speedup?

Feel free to change the value of the defined “SPLITTER” variable and observe its effects on
performance. Remember you will need to recompile the code each time you make a change to
this variable.

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
94

Lab 3 - Proposed Solution (ver2)

Our proposed solution does not create a new task once a small enough n is reached:

int fib(int n)
{

if(n < 2) return n;
int i, j;
#pragma omp task shared(i) if(n>30)
{

i = fib(n - 1);
}
#pragma omp task shared(j) if(n>30)
{

j = fib(n - 2);
}
#pragma omp taskwait

return i+j;
}

int main(int argc,
char *argv[])

{
...
#pragma omp parallel
{

#pragma omp single
{

#pragma omp task
answer = fib(number);

}
}
...

}

Argonne Leadership Computing Facility95

Thank You for attending
our OpenMP Hands-On!

Argonne Leadership Computing Facility96

Backup

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Knights Landing Architectural Diagram

Diagram is for conceptual purposes only and only illustrates a CPU and memory • It is not to scale
and does not include all functional areas of the CPU, nor does it represent actual component layout.

DDR4

DDR4

DDR4

DMIWellsburg
PCH

Up to
72 cores

PCIe Gen3
x36 (KNL)
x4 (KNL-F)

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

M
ic

ro
-C

oa
x

Ca
bl

e
(IF

P)

M
ic

ro
-C

oa
x

Ca
bl

e
(IF

P)

Connector

HFI

2 VPU

1M
B

 L
2

Core

H
U

B 2 VPU

Core

TILE

DDR4

DDR4

DDR4

Up to 72 cores
2D mesh architecture

Up to 16GB high-bandwidth on-package memory (MCDRAM).
Exposed as NUMA node ~500 GB/s sustained BW

Over 3 TF DP peak • Full Intel® Xeon Phi™ ISA compatibility through Intel® AVX-512
~3x single-thread compared to Knights Corner

6 channels
DDR4
Up to
384GB

Common
with
Grantley
PCH
1S (no
QPI/KTI)

2x 512b VPU per core
(Vector Processing Units)

Based on Intel® Atom™ processor
(Silvermont) with many HPC enhancements
• Deep out-of-order buffers
• Gather/scatter in hardware
• Improved branch prediction
• 4 threads/core
• High cache bandwidth and more

97

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Integrated On-Package Memory Usage Models

Model configurable at boot time and software exposed through NUMA1

98

Cache Model Flat Model Hybrid Model

Description
Hardware automatically manages the
MCDRAM as a “L3 cache” between
CPU and ext DDR memory

Manually manage how the app uses
the integrated on-package memory
and external DDR for peak perf

Harness the benefits of both Cache and Flat
models by segmenting the integrated on-
package memory

Usage Model

§ App and/or data set is very large
and will not fit into MCDRAM

§ Unknown or unstructured memory
access behavior

§ App or portion of an app or data
set that can be, or is needed to be
“locked” into MCDRAM so it doesn’t
get flushed out

§ Need to “lock” in a relatively small portion
of an app or data set via the Flat model

§ Remaining MCDRAM can then be
configured as Cache

Split Options2

• 25 / 75%
• 50 / 50%

8GB/ 16GB
MCDRAM

Up to
384 GB
DRAM

Ph
ys

ic
al

 A
dd

re
ss

DRAM
16GB

MCDRAM

64B cache lines
direct-mapped

DRAM

8 or 12GB
MCDRAM

8 or 4GB
MCDRAM

